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- Abstract. A one-step photoemission calculation scheme for valence electrons is presented
which wses (to construct the initial- and final-state wavefunctions) the muilti-slice technique,
which has been developed for low-energy electron diffraction (LEeD). Included in the scheme is

" the possibility of having an over-layer or an arbitrarily shaped surface barrier, and realizing both
the electron and hole Iife-times by means of an imaginary part to the energy. The photoemission
intensity due to surfase states can also be calculated separately by the same procedore. The

~ advantage of the scheme is that because the crystal potential is divided into arbitrarily thin slices,
' problems associated with the frequently used muffin-tin potential do not arise.

1. Introduction

To interpret experimental photoemission data it is necessary to have an underlying theory.
- . The three-step mode} developed by Berglund and Spicer [1] has proved to be a very useful
~method which has been compared successfully with experimental data [2]. However, certain
features are observed in experimental data that cannot be described by this model, for
~example, emission from surface states and resonances, and accurate intensities of bulk
transitions. The three-step model. is limited to direct transitions and because of the exact
conservation of the-electron wave vector, it does not deal with the width of direct transition

lines [3].

_ A more quantitative way to treat the photoemission process, which takes full account of
the one-electron bandstructure, multiple scattering of the photoelectron, lifetime broadening
and surface effects, is the one-step model of photoemission, where an electron is excited out
of its initial state directly into its final state. Various one-step theories have been given in
the literature [4-26]; the more recent ones being based -on Pendry’s [26, 27] non-relativistic
layer-KKR photoemission theory, which can also be used to calculate inverse photoemission
intensities {28]. The one-step theory has been steadily improved and extended over the
years by several groups. In particular, a realistic model for the surface potential has been
introduced [15-19] as have relativistic [20-22] and temperature effects [23,24]. Recently,
this scheme has been generalized to the case of space-filling potential cells of arbitrary shape
[25] which means that the muffin-tin approximation need not be used. While the muffin-
tin approximation is particularly suited to close-packed systems, more open and covalent
structures are not well described. _

In this paper we present an alternative approach using pseudopotentials. The calculation

uses LEED techniques to construct explicitly the initial and final states which are written as a
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linear combination of Bloch waves. The LEED scheme combines the semi-reciprocal method
of Tournarie [29] with the multi-slice method of Cowley and Mocodie [30]. By considering
a very thin slice of crystal, the solution can be given analytically. The full solution can
then be obtained as the product of solutions for individual slices (the Q-matrix inethod).

In most photoemission calculations the crystal is divided into layers confaining an
arrangement of coplanar atoms, whose potential is chosen to be a muffin-tin potential.
The slicing of the potential, as is done in the calculation schéme presented here, means
that no such restriction is incurred, §o that it is possible to calculate the photoemission
for complicated structures, including surface barriers and over-layers. The drawback of
the present method is that because a pseudopotential must be used for the calculation of
the injtial states to keep the amourit of numerical work feasible, photoemission intensities
from core levels cannét be obtained directly. Also, one should keep in mind that the
obtained initial-state wavefunctions are not the true ones, but pseudowavefunctions. It was
shown by Martinez et al [31] that the values of the squares of the matrix elements are
approximately 10-20% too small in comparison with the values obtained by using more
accurate wavefunctions. In our calculations, however, we are not aiming at obtaining the
intensities with a bettér accuracy than this. The level of agreement with experimental results
can be seen in section 3. The inaccuracies introduced by using pseudowavefunctions may
depend on the material and the pseudopotential used.

- In the present paper the theoretical method is given, with one numerical example of
calculated photoemission intensities for Mg(OOOl) in section 3. Further results obtained
using the method outlined here are presented in the succeeding papers [32,33]. In a
previous paper [34], it has been shown that complex bulk and surface state/resonance
bandstructures can be obtained with a satisfactory accuracy using the multl-shce method,
where bandstructuies were obtained for Mg and GaAs.

2. Method

This section presents the derivation of the equations used to calculate the photoemission

intensities. The photocurrent in a one-step model can be written, within the one-electron
picture, as

JREyee 3 | @er R EY| H™ | 9500 P 8(E —Ei—he) (D)

occupied f

where E; is the energy of the initial state and ¥; is the occupied eigenstate. R is the position
vector of the detector and s and E are the final state and energy of the photoelectron

respectively. The interaction of the electrons with the exciting electromagnetm field is
taken as [35]

H™ = _(he/2mc) AE- ¥V

where £ is the polarization vector and Ag is the magnitude of the vector potential of the
incident light field.

It is easier to understand the photoemission calculation if the method of solution of
LEED intensities is understood. This is described in detail in [34] and [36] and outlined
below in section 2.1.
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2.1. LEED éalculation
The 'Schﬁidinge; equation for LEED can I;\e writteri as’

V2l 4 (2»&/&4)(5 _vt=0 | S @

- Thé superscnpt L denotes LEED. The crystal potennal is represented bya Founer sunimation,
where the coefficients V (i, k; 1) are the structure factors

Viz,y. 2) = Z VG k, 1) explir + gre) 3
Akl
and
Vi kD)= filgne) explid - gnip). - @
= o

f; is the atomic form factdr and d; is the position véctor of the ion j in the unit cell.
"Gris is a reciprocal lattice vectof, 4, k, I being indices, and » is the real space vector.
' Equanon (2) can be expressed in mixed representatwn, that is, reblprocal space is used in
the plane parailel to the surface (the £, y plane} by imposing Blach penodlcxty for giveri
values of (%, ky) = k", but nof in the dlrecuon Z peipendicular to the surface The L.E.ED

wavefunetion in real §pace can then bé written as

zﬁ"(x.,—&;'é)=exﬁ(ik.‘r-én)Zw;‘;@(z)eﬁp[zm(hbl.+zcbz)-p'n1_ - ®
N A : :

where k is determmed from the ang]e and energy of the LEED électron, pu (x, y), and
b 2 dre the surface remprbcal lattice Vectors, We call tIl,, ¢ the scdttering ampiuudes The
Schrodinger equation carl thién be expressed as a first order matrix equation by usmg a
supennamx and solved for W ', by using the €2-inatrix method [34] :

* The number of ¥}, (z) is truncated to a suitablé value N. This value may be taken as
the number of reciprocal lattice rods intersecting the Ewald sphere inside the crystal, or a
larger number of rods may be taken ‘where the extra rods correspond to evan€scent waves
- in the crystal.- Eqiiivalently, N can be thought of as the number of ‘beams’; 2N being the

number of plane Waves in the two-dimensiohal expansion of the Wavefunctidn
The scattering amplitude \II_,l (2) in die bulk region is written as 4 linear combination -
of Bloch wave amiplitudes. A LEED solution for a sufﬁc:ently thick slab is kriown @ priori
_to include only thé Bloch functions decressing into the bulk. For a partictilar bk

U@ =Y e - ®

where beﬁ.k(z) are the amplitudes associated with the beam (&, %) detived from the nth
Bloch wave travelling into the crystal (that is, decreasing with increasing z), and the - are
the coefficients to be determined from the boundary conditions incorporating the surface
region properly [34]. :
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2.2. Final states

The final states of the .photoemission process are determined directly from the LEED
calculation. The final states are the time-reversed states of the LEED states described in
section 2.1. The final state can be written as a Fourier expansion as shown in equation (5)
for the LEED wavefunction, but with superscript f, denoting the photoelectron final state,
instead of L. The scattering amplitude W} ,(z) can be expressed as a linear combination of
Bloch waves as in the LEED case shown in equation (6), but again with superscript f. The
LEED state Y should replace ¥ in equation (1), giving

Yt = g7 = exp(—ikf, - p”)z w(2)exp[—2mithb + kbo) - pr]. (D)

From equations (3) and (7) it can be seen that
ki = —kj Ve (@) =" @)
and accordingly from cquation (6)

Lbﬂ k(z) _}, _k(z)
and

2.3. Initial states

The initial states of the photoemission process are obtained from the multi-slice LEED
calculation for energies below the vacuum level using a suitably chosen potential and are
constructed as a linear combination of Bloch waves [8]. The boundary conditions for
the initial-state wavefunction are modified accordingly since there is no incident wave as
in the LEED situation. While the procedure may take more calculation time than direct
evaluation of the initial-state Green function [26,27], the contributions of the individual
surface electronic states to the photocurrent are obtained separately, which facilitates the
physical interpretation; further the bandstructure incorporating the surface is obtained as a
by-product of the photoemission calculation [34].

The wavefunction of an initial state can also be written as an expansion as in
equation (5) for the LEED wavefunction, but with superscript i, denoting the initial state
of the photoelectron instead of L. The scattering amplitude II';, w(2) for the initial state, in
the bulk region, is expressed as a linear combination of Bloch wave amplitudes, as was
that of the final state. A pseudopotential is used to calculate the initial states, so different
Hamiltonians are used for calculation of the initial and final states, which therefore must
be properly aligned in energy when evaluating equation (1). The number of \Il},,.k,(z) is
dependent on the material being studied [34], and is determined by increasing this number
(the number of beams) until a sufficiently accurate bandstructure is obtained.

Specifically, an initial state W7 ., in the bulk region is formed from the mth Bloch wave
with amplitudes ‘b 7 » moving towards the surface from the bulk, and ones with amplitudes
ip%, constituting of those moving away from the surface into the bulk (reflected ones) and
of a number of evanescent Bloch waves decreasing into the bulk necessary to maich waves
at the crystal/vacuum interface. All of these waves have the same energy and reduced kh.
The initial state W37 i i written as

U @) = Z Bk @y + B (@) | ®
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In matrix notation equation 7(8) and its derivative can be expressed as
U™ (2) = B} ()" + b~ ()c™~ - ©)
U™(z) = B*(z)e" + b~ (z)c"~. o ' (10)
B;" and B;* are N x N matrices containing the Bloch amplitudes and derivatives respectively

travelling away from the surface (and €™ is a column matrix containing their coefficients ¢} ).

b/~ and b~ are column matrices containing.the Bloch wave amplitudes and derivatives
for the mth Bloch wave travelling towards the surface with amplitude ™~ (a number).

' In the absence of a surface barrier or over-layer, the coefficients ¢ in the expansion of

the scattering amplitude are found by matching the scattering amphtudes and denvatwes at

z = 0 to evanescent waves in the vacuum. The rcsultmg equauon for ™ is

= ~[B*©@ +iKBF )] ' [b"~(0) + Kbl - @]~ Cap

where K is 2 diagonal N x N mairix containing the normal components of the wave vectors
of the N evanescent waves in the vacuum. The value of ¢™~ is evaluated in nonnahzmg
the initial state wavefunction {(see below).

To include an over-layer or surface barrier, the waves must be matched at both the
bulk crystal_]over—layer interface and the over-layerfvacuum interface, The equation fqr the
coefficients in this case is given by _

e = ;[B;+(s) — xv—‘-B;f(s)]" [b™= )~ XY'bP @)~ (12)

where

X = nm(s)-lm ©). Y=ﬂ?ll(s)——§l<ﬂf’2(s) ' | (13)

s (B D0s)
S - i
“(s)'(nsi(s) as (s))

Q8(s) is the Q-matnx for the surface region with thickness s [34]

and

© 2.3.1. Orthogonalization and normalization of the initial states. The final state, determined
as described above, is normalized properly in a LEED calculation so that the incident electron
has a probability amplitude of one; however the initial states must be orthogonalized and
normalized in order to be inserted in equation (1). In the present calculation we can show

(cf. [37] and [38]) that as long as the effect of evanescent Bloch waves can be neglected, the
- wavefunctions given by equation (8) with different indices m can be regarded as forming an
~ orthogonal system of initial states in the space of the half-infinite crystal. The normalization
to the delta function of energy leads to the value of ¢™~ given by - -

= [erm(-ok )] " o - - ag

where we have assumed that the Bloch waves are normallzed in one unit cell, giving
1_2f i (z) (z)dz

¢ is the unit lattice translation in the z direction. We ﬁoté that 8k, /9 E in equation (14) is
-negative since the Bloch waves with amplitudes ib,’ﬁ,j (z) are assumed to be moving towards
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the surface from the bulk. The quantity (3k,_/dE)"\is the group velocity of the Bloch
electron and can be calculated as [39]

T LI R I BT
— — i ¥ 2 oigm :
( 38 ) i 2 kj; ke ") 5 P ()%
assuming the same normalization of the Bloch wave as above. Hence we may write

| S8 e (O 3. -1z
Cf"“ = (—E-— Ef ‘b,':'_{*(ﬂ-“'bzzj(z)dz) .

icm

A more detailed analysm of the orthogonalization and normahzatton is neccssa:y when the

contributions of evanescent Bloch waves become significant. This takes place at resonances
and near band edges [38). :

2.4. Deérivation of the photocurrent equation

For simplicity, assuming an orthogonal crystal lattice system, and correspondingly an
orthogonal coordinate system (generalization to non-orthogonal systems can easily be done),
the photocurrent as expressed in equation (1) is proportional to

fffw e vy drdyds| (-1.5>

where the polarization vector € is given by

J(R, E) &

oc:upted H

T=¢g,7+ 6,7 + &;k = sin @ sin f7 + sin @ cos B7+ cos ak.

o is the angle between Z and the surface normal and 8 is defined to be the angie between
the parallel component of € and 7.

Substituting into equation (15) the Fourier series expressions for the initial and final
states (analogous in form to equations (5) and (7)) leads to,

j f fz }: Wi (2) exp(—ikf , - py)E- V[E\ph, ()

2

x exp(iki, , - p")]dx dydz| .

J(RE) x

occupmdx

(16)

The two-dimensional real-space vector py can be written out more fully as

py = (x/la1)}e1 + (¥/laz)) @,

where a; > are the direct lattice vectors in the surface piane, and x and y are the real-space
distances. Also, in equation (16)

kit = (kg /101l + 2mh) by + (kg /1ba] + 2mk) by

where kf;f and kf,': are the components of the wave vector k‘ﬁ" in the' directions by and by
respectively. The dot product in equation (16) can then be written as

ke oy = (5 /1by| + 2wh)x/la | + (k,,z |ba| +27k)y/l@zl.
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Expanding v, equatic'm {16) can be expressed as

f f f (z) exp(—:kh i° -p1) z[sm «sin B 21:1( 3 k;bll-!-‘h’)

&, 1 8
b —+sm o COS 27:1( 5 +k’) +cos a—]
la| ﬁ 2B} laz| 3z |

xmp,,, JE,(z)exp( ke p“)dxdydz

i(R, E)
geoupied i

2

The integral over x and y can be replaced by the delta functlons
- {[K 2wl + 1 — (ki,/?-?tlbni + h)]/Ia[i}

| 5[y, /2 el % & — (K, /2 1bal + ) lazl}.

Therefore, there will be zero photoc_urféﬁt unless _ .

(1B, k) =2z kY and (/b)) —K) =22k —K)  (17)

~ that is, unless the parallel component of the wave vector is conserved modulo a sorface
reciprocal lattice vector. ‘Writing the wave vectors in terms of the reduced zone scheme
(superscript R), it can be deduced from equation (17) that kR‘ = ka and similarly for the &>
component of &, which gives ' = h-+n and &' = k+q, whcre n and g are determined from
the diréction of emission of the photoelectron and the energy. This relationship describes the
position of k relative to k in the extended two-dimensional Brillouin zone. Equatlon (16)-
- can thén be wntten s,lmpl),r as :

2.
Z Z q’!f: ((AZ)) Fy, k‘ph-e-n Ic-i-q(‘é‘-z.r) - (18

slices j Ak

i®B« Y

occupied {

*~ where the integral over z is evaluated as a sum over the slices Az; and

Fop= Zm{[(h + n)jby| + kf!’/ZJr] sm"ixsm B + [(k+ q)lbzl + kR /25:] sinr‘arcos B
~ +cos a-d/0z} R '

(for an crthogonal system 1/{|b;||a1]) = 1; similarly for by and a5).

2.5. Contribution to the photocurrent j;i'am the bulk crystal

As mentioned earlier, the crystal is déscribed by a z coordinate with values of z =0 — s
for an over-layer and z = s — +oo for the bulk crystal. The contribution to the
photoctirrent from the semi-infinite bulk is gwen by the integral over z = § —> 400,
and is discussed below. -

Substituting the Bloch expansmns for the initial (equation (8)) and final (as for
equation (6) but with superscript f instead of L) states into equation (18), the probability
‘amplitude Ag of the photocurrent due to the mth initial state in the bulk crystal can be
written as (dropping the index m) o

Z(Z fb;_;_(Azj)t;*)][Fh,k(z B +(Az,)c s+ by (Az))e™ )}

bulk slicés j[ ok o

Ap =



8218 C Stampfl et al

where normal emission is assumed for simplicity, i.e. # and g in eguation (18) are equal
to zero. The above equation can be split into two terms

Z D fbﬁi(Azs)f“Fn & By (Az))e™

=1 ki n

and

Az = Z Z Z sz HAZL" Py Z ib F(azpe, .

j=1 ki n

The contribution from slices lying beyond the first cell can then be expressed in terms of the
Bloch functions in the first cell. If there are g slices in the cell and Az, denotes the last slice
of the cell, then for example, summing the contribution from slices Az, Azgy, Azager, ...
occurring in the expression for A; leads to (writing k;, kf for Bloch wave vectors)

Z 2 III + expli(—kf* + k) - ] + {exp[i(—kf* + &) - ] }2 +.. :ﬂ

hk n
X B4 Az)E* Fr e by (Azy)e™

where ¢ is the lattice period normal to the surface. This is equal to

ZZ 1 —expli(— k"* +k) - ][ bz.‘l‘:(Azl)t,E*Fh‘k by (Azy)e™].

Repeating this procedure for all of the slices of the bulk cell gives

g
T 3 (AzH* Fy by (Az))e™.
hz,;;l—exp[l( k”*+k) ; D))" Fy i by (Bz))

Similarly, the contribution for the second term A; becomes

1 g ¢
Ay = - TR (AZ)E*Fy B P (A,
? %;§I—exp[i(—k?*+k?).c]j§ wil B2 P b (A1)

The complete expression for Ag can then be written as

q a
Ag = Z(A; D00 (AT Fai by Az

r h& j=1

q ’
+ AT DY A Pk B (Az;)c,,r)
"J

fk j=1
where
Ay = 1/{1 —expli(—k{* + ki) - ]}

and

= 1/{1 — expli(—kf* + K- cl}.
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The final form of the probability amplitude for the photocurrent (not including surface
states or an ovcr—]ayerlsurfacc barrier) can then be written in terms of LEED functions as

AB:_ Z( ZZ Lpr 2 JE(szJ zLF,, 87 (Az)e

k=l
+ Y AL, }:Z e _k(Az,)zLFhk (Az,)c )
, x 0 kA =1
- where 7 ' -
- A7 =1/{1 — expli(k] + k») - cl}
and o ‘

Ak = 1/{1 — expliCk] + k') - cl}.

The interference between different layers is accounted for by the factors A which represent
the remnant of the conservation of crystal momentum in the z direction, Only if an infinite

" number of layers contribute to the photocurrent (i.e. in the unrealistic case of vanishing
damping) do the factors A reduce to the §-function-like form. To simulate the effect of
inelastic scattering (damping) an imaginary part is added to the energy for both the initial
and final states. A value of this parameter can be obtained by various means [40,41].
Accordingly, the wave vectors are complex in the z direction. :

2.6. Contribution to the photocurrent from the surface barrier or over-layer

) The contribution As 1o the probability amplitudé of the photocurrent due to the suiface
barrier or over-layer for a particular initial state is given by '
As= Y. DU (A Fi ¥ (A7)
_  surfacestices j=1 h.k S
where there are m slices in the surface barrier or over-layer. This contribution is added to
that, Ag, of the bulk. The values of \IJ % and lli,.z ¢ in the surface region are obtained using
the £2-matrix forrnula having detelmmed their values inside the bulk.

27 One-dtmensmnat DOS factor

. Lastly the sum over occupled #* must be considered. This sum implies two factors, one
of which was mentioned above, that is, the contribution to the intensity from each initial
state (each "6} 7.(z) in equation (8)) with band index m — must be added together.- The
second factor is the one-dimensional density of states 8k, _ /9 E along k,. We see, however,
in equation (14) that this factor is already included in the normalization factor ¢™~ in
normalizing the initial-state wavefunctions to the deIta functlon of energy The totai current
is then given by :

](R, B Y N Ag"-) FATTR, | (19)

gecupied band (m —) ' :
We note that the contributions from the bands with index o'+, correspondmg to the Bloch
waves moving away from the surface into the bulk, may ‘be obtained by co]]ectmg the
contributions from the corresponding term in the expression for .4, above. It can also be

shown (cf. [8] and [38]) that the dens1ty-of—states factors for these bands are automancally
- correctly introduced.
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2.8. Surface states as initial states

Photoemission is possible from both surface states and surface resonances. Surface
resonances occur outside an energy gap and are like surface reflected bulk states with a
high amplitude near the surface. Emission from these states are included in the method
described above,

- Surface states are evanescent waves located at the surface of a crystal, therefore the
expression for their scattering amplitudes and derivatives in terms of Bloch waves does not
contain any propagating waves, only decreasing components. Neglecting again initially the
presence of a surface barrier/over-layer, the surface state wavefunctions are derived from
equations (9) and (10), but without the b and b;™ terms present. The coefficient vector ©
is determined by solving the homogeneous equation

Qc =9 : — (20)
where
Q = B;"(0) + iKB; (0).

A solution will exist if the determinant of Q is zero, which occurs only at discrete energies.
This constitutes a method of obtaining the surface statefresonance bandstructure [34]. Thus,
in the present calculation scheme the surface state, as an initial state, must be calculated
by a different method to that for bulk states and surface resonances. ‘A convenient way of
obtaining the photocurrent due to a surface state with a finite lifetime is as follows.

After equation (1), the photocurrent for a particular mmal state 1,!:, can be expressed as
being proportional to ,

Nl F™ ) P8 (Es — E; — hao) = (el H™|40)8(E¢ — E; — o) (%W“‘!rfrﬁ :

The central part is replaced by [26] |
[¥:)8(E — Ep (¥ = ~(1/7)3Im G (E)

where E = E; — Ao and G‘f(E) is the ith sPectr'al component of the Green function
Gi(E) = [0 (Wal/(E = E; +i8r) (& —> +0)

giving B _
iR, B) & ~(U/m) (Wl ™ G BY ™.+ @

To introduce a finite lifetime we impose on & a finite value. Then a surface state |1} appears

at energy E; with lifetime parameter &;. It is desired to find an approximate expression for
G;(E) for values of E near E;.

In place of equation (20} & more general equation can be wntten.
Q(E)C(E) = u(E)C(E) (22)

where w(E) and C(E) are the ecigenvalue and eigenvector of Q(E) respectively.
Equation (22) indicates that one of the eigenvalues, p;(E), becomes equal to zero at £ = E;.
(This is equivalent to det @ = 0, because detQ is equal to the product of the eigenvalues
of Q). Expandmg Hi (E) in a Taylor series around E;

wiE) = duifdE)g=g(E—E)) +....
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Then writing

(E - E i) = (dﬂx/dE)E;_EfM(E)

and substituting it into the expression for G;(E)

© GHE) = W el ([ /AE) e, ] i E) +iea]).

The eigenvector of Q(E) which belongs to the eigenvalue p;{(E) is designated ¢;(E).
The value of ¢ which is sought as a solution of equation (20) is simply the value of ¢;(E)
at £ = E;. Hence ' , o -

W) =l = leiED).

The symbo ic) mf':ans a linear combiﬁation of Bloch functions with coefficients c,. Hence

Gi{E) = lci(E: ))(c,CE)l/{[(d,u,/db‘)z_s,] "B +ie; ).

lei(E; )} should be normahzed in such a way that the integral of the absolute square of
the wavefunction i; over the two-dJmensmnai unit cell and the range of z in which v; is-

“finite (including the vacuum tegion) becomes unity. In the present notation the integral is
evaluated as _

W= Z‘Vﬁ(ﬂzj)‘l’h (A7)

slices j Ak

~ where ¥ @D=Y, 0 (z)c,, in the bulk crystal. Their values in the surface and vacuum
regions are derived by the {2-matrix method (as in section 2.6). '
- Since the values of du;/dE and ¢; may not vary appreciably in the small energy range

of a surface state peak breadth, their actual values may be replaced by their approximate

valtes evaluated at an energy £ = E near E;. Thus an exact value of E; need not be
found. Then G;(E) can be wntten as - S

GiE) = ICJ(E))(CJ(E)I/{[(dM;/dE)E_E,] ;.-.,(E)-i-xe.} : (23)

This equatlon can be evaluated by ﬁrstly approxlmately locating the surface state by finding
either the zeros of Q or the minima of s that are most conveniently located by considering
instead the Hermitian matrix @ Q and finding the minima of the corresponding eigenvalues
|]2. Once located at energy E{, p is obtained for a small region of energy around the surface
state from which the denommator of equation (23) can be evaluated. The eigenvectors of
' equat:[on (22) give |c:(ED). G; ;(E) is then evaluated and substituted into equauon 21) to
obtain the photocurrent due to the surface state.

3. Application to Mg(0001)

As a numerical example, the method presented above is applied to the calculation of normal-
- emission photoemission intensities from Mg(0001) in the photon energy range iw = 26—
48 eV where the results obtained are compared to the experimental data of Bartynski ez
al [42] (figure 2). Figure 1(a) and (b) shows respectively the experimental and theoretical
results. The main features in the experimental results are a surface-state peak which oécurs-in
all the spectra at approximately —1.6 €V, and a bulk transition seen initially at approximately
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Figure 1. (a) Experimental normal-emission photoemission spectra from the Mg(0001) surface
for various photon energies, reproduced from [42]; (b) caleulated photoemission intensities
obtainzd using the present method.

—6.2 eV for fiw = 26 eV. The latter peak disperses towards the Fermi level with increasing
photon energy. At hw 2 44 eV this peak coincides with the surface-state peak.

‘The theoretical results show reasonabie agreement with the experimental results, where
a surface state occurs at approximately 1.6 eV. The corresponding bulk transition is seen
at about —6.9 eV for iw = 26 eV and disperses towards the Fermi level with increasing
photon energy as in the experimental results. The theoretical spectra were calculated using
a three~dimensional surface potential barrier (both at initial state and final state energies) in
which the potential smoothly goes to zero in the vacuum region. It was obtained using a
supercell consisting of eight Mg layers (20.8 A) and 2 vacuum region corresponding to the
same distance {321. ,

It can be seen when comparing the theoretical spectra with the experimental data that
the bulk transition is shifted non-uniformly. The origin of this discrepancy could be due
to either deficiencies in the local-density approximation used in the band calculations or 1o
inaccuracies inherent in comparing an excitation spectrum with a ground-state calculation
(the self-energy effect). o

The surface-state intensities of both the experimental and theoretical results exhibit
a sensitive variation with photon energy. This is illustrated in figure 2 in which the
experimental points have been reproduced from [42] (figure 3) and are shown as filled
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Figure 2. Comparison of the surface-siate intensity as a function of photon enetgy. The filled
circles are the experimental results taken from [42]; the fine curve is the calculated intensity
obtained using a step barrier and the bo!d curve is the dalculated intensity ‘obtained using a
smooth surfane parrier. - .

‘circles. The theoretical points; obtained using equation (21), are shown as the curves. The
fine curve is the result obtained using a step barrier placed half way between Mg atoms
and for the bold curve the same smooth surface barrier as.in figure 1(b) is used. It can
be seen that the smooth barrier yields results that agree better with experiment, illustrating
the importance of including a realistic surface potential barrier when surface effects in
photoemission are being investigated. The resuits briefly presented above wﬂI be dlscussed
_in more detail in a subsequent pubhcatlon [32].

4 Conclnsion

It is shown that a one-step photoemission calculation scheme can be presented in a
formuolation based on the multi-slice method of determmmg LEED intensities. It is
applicable for electrons in the valence band region and takes account of final- state and
-surface effects and electron and hole lifetimes. Emission from bulk and swrface states are
calculated separately in the present procedure, This method has been successfully applied
" to magnesium and galllum arsenide, the results of which wzll appear in subsequent papers
{32,33]. :
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