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Abstract A one-step photoemission calculation scheme for valence electrons is presented 
which uses (to mnshuct the initial- and Ii~I-State wavefunctions) the multi-slice lechnique, 
which has been developed for low-energy electron diaaction (LEW). Included in the scheme is 
lhe possibility of having an over-Iayer or an arbiharily shaped surface barrier, and realizing both 
the electron and hole life-times by means of an imaginaty pm to the energy. The photoemission 
in&nsity due to surface states can also be calculated separately by the same procedure. The 
advantage of the scheme is that because the crystal potential is divided info arbihwily thin slices, 
pmblems associated with the fresuently &sed muffin-tin plemial do not arise. 

1. Introduction 

To interpret experimental photoemission data it is necessary to have an underlying theory. 
The three-step model developed by Berglund and Spica [l] has proved to be a very useful 
method which has been compared successfully with experimental data [2]. However, certain 
features are observed in experimental data that cannot be described by this model, for 
example, emission from surface states and resonances, and accurate intensities of bulk 
transitions. The three-step model is limited to direct transitions and because of the exact 
conservation of the electron wave vector, it does not deal with the width of direct transition 
lines [3]. 

A more quantitative way to treat the photoemission process, which takes full account of 
the one-electron bandstructure, multiple scattering of the photoelectron, lifetime broadening 
and surface effects, is the one-step model of photoemission, where an electron is excited out 
of its initial state directly into its final state. Various one-step theories have been given in 
the literature [4-261; the more recent ones being based on Pendry’s [26,27] non-relativistic 
k3yer-KKR photoemission theory, which can also be used to calculate inverse photoemission 
intensities [28]. The one-step theory has been steadily improved and extended over the 
years by several groups. In particular, a realistic model for the surface potential has been 
introduced [U-191 as have relativistic [20-22] and temperature effects [23,24]. Recently, 
this scheme has been generalized to the case of space-filling potential cells of arbitrary shape 
E251 which means that the muffin-tin approximation need not be used. While the muffin- 
tin approximation is particularly suited to close.-packed systems, more open and covalent 
structures are not well described. 

In this paper we present an alternative approach using pseudopotentials. The calculation 
uses LEED techniques to construct explicitly the initial and final states which are written as a 
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linear combination of Bloch waves. The LED scheme combines the semi-reciprocal method 
of Toumarie [29] with the multi-slice mehod of Cowley and Moodie [30]. By cdnsidering 
a very thin slice of crystal, the solution can be given analytically. The full solution can 
then be obtained as the product of solutions for individual slices (the Q-matrix method). 

In most photoemission calculations the crystal is divided into layers containing an 
arrangement of coplanar atoms, whose potential is chosen to be a muffin-tin potential. 
The slicing of the potential, as is done in the calculation scheme presented here, meins 
eat no such restriction is incurred, So that it is possible to calculate the photoemission 
for complicated structures, including surface bariiers and over-layers. The drawback of 
the present method is that because a pseudopotential must be used for the calculation of 
the initial states to keep the amomit of numerical work feasible, photoemission intensities 
from core levels cannot be obtained directly. Also, one should keep in mind that the 
obtained initial-state wavefunctions are not the true ones, but pseudowavefunctions. It was 
shown by Martinez et ai [31] that the values of the squares of the matrix elements are 
approximately 10-20% too small in comparison with be  values obtained by using more 
accurate wavefunctions. In our calculations, however, we are not aiming at obtaining the 
intensitih with a better a c c q c y  than this. The level of agreement with experimental results 
can be seen in section 3. The inaccuracies introduced by using pseudowavefunctions may 
depend on the material and the pseudopotential used. 

In the present paper the theoretical method is given, with one numerical exaniple of 
calculated photoemission intensities for Mg(ooO1) in section 3. Further results 6btained 
using the method outlined here are presented in the succeeding papers [32,33]. In a 
previous paper [34]. it has been shown that complex bulk and surface state/resonance 
bandstructures can be obtained with ,a satisfactory accuracy using the multi-slice method, 
where bandstructures were obtained for Mg and GaAs. 

2. Method 

This section presents the derivation of the equations used to calculate the photoemission 
intensities. The photocurrent in a onestep model can be written, within the one-electron 
picture, as 

j ( E ,  E )  O( 1 I (frf(r, E, E )  I H'" I w)) i2 S ( E  - E ~  - h o )  (1) 
oecupiedi 

where Ei is the energy of the initial state and fri is the occupied eigenstate. R^is the position 
vector of the detector and +f and E are the final state and energy of the photoelectron 
respectively. The interaction of the electrons with the exciting electromagnetic field is 
taken as [35] 

Hint = --fifie/2mc)AoZ. V 

where ?is the polarization vector and A. is the magnitude of the vector potential of the 
incident light field. 

It is easier to understand the photoemission calculation if the method of solution of 
LEED intensities is understood. This is described in detail in [34] and [36] and outlined 
below in section 2.1. 
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2.1. LEED calculation 

The Schriidinger equdioh for LED can be written 'as' 
. .  

v*$' + (Zm/hz)(E - VI?' = 6,  (2j 

Th? superscript L denotes LEED. The crystal potential is repr&sen@ by a Fourier suriiinatiori, 
where the coefficients V ( h ,  k : l )  are the Wcture factors 

._. , 

y(x, Y. 2) = V(h.  k, 1 )  eXp(iT . gh.k.d (3) 
6,k.f 

and 

fi is the atomic form factdr wd dj is the position v&tor of @e ion j in the uiit cell. 
g6.t.l is a reciprocal lattice v ~ w r ,  h,  k, 1 being indices, an@ T is the rea! Space vector. 
Quati$ (2) can be expressed ip mihd representation, that is, e ipmcal  sp& is used in 
the plan8 parallel to $e surface~(the i, y plane) tiy imposing Blcch periodicity for given 
values of (kx, kr) = kll, but not in the diktion z peiljendicular to the surf'ace. The LEED 
wavefundion in real space can then be written as 

eL(x;yj z) = exp(iki. &) c qiJz) exp[hi(hbz + kh) . pll] ~ (5)  
h.k 

where k\ is determina from the,qgle and energy of the &ED eleciroin, = ( x ,  y)i and 
61.2 iire the surface recipibcai lattice vectors. We call qhk the Siattering anipiitudes. h e  
Schriidinger equation cqi tlien M expressed as a first order m&ix equation by usiiig a 
supermatrix and solved for $ik by using the Cl-matrix method [i3dj. 

'' The numkr of '4 ' ik(z)  is truncated to a suitable value N .  This~value may & taken as 
the number of reciprocal 4attice rods intersecting the Ewald sphere  inside the crystal, or a 
larger nusn6e.r of rbds may be taken where the extra rods correspond to evm6scent waves 
in the cryshl: Eqiiivalently, N can .be though& of as the number of 'beams'; iN being ihe 
number of plane \I;aves in the two-@mensionai expansion of the wavefunction. 

m e  scattering amplitude Ykk(z) in ttie bulk region is written as a linear combination 
of Blwh wave aniplitudes. A LEED solution for a sufficiently thick slab is known a priori 
to include only the Blcch functions decreasing into the bulk For a particular h, k 
. .  

where Lbi.,(z) are the amplitudes associated with the beam (h. k) derived from the nth 
Bloch wave travelling into the crystal (that is, decreasing with increasing z). and the t," are. 
the coefficients to be determined from the boundary conditions incorporating the surface 
region properly [341. 
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2.2. Final states 

The final states of the photoemission process are, determined directly from the LEED 
calculation. The final states are the time-reversed states of the LEED states described in 
section 2.1. The final state can be written as a Fourier expansion as shown in equation (5) 
for the E D  wavefunction, but with superscript f, denoting the photoelectron final state, 
instead of L. The scattering amplitude Y;.&) can be expressed as a linear combination of 
Bloch waves as in the LEED case shown in equation (6). but again with superscript f. The 
LEED state $L should replace +; in equation (I), giving 

$' = +; = exp(-ikfi P I , )  (7) YL:(z)exp[-%ri(hbl+ k4) * pjJ. 
b.k 

From equations (5) and (7) it can be seen that 

kfi = -kfi Ykk(Z) = YT*h,-&) 
and accordingly from equation (6) 

Lbt,,(z) = 'b"_,-t(z) 

and 
L- f. t" - tn . 

2.3. Initial states 

The initial states of the photwmission process are obtained from the multi-slice LEED 
calculation for energies below the vacuum level using a suitably chosen potential and are 
constructed as a linear combination of Bloch waves [8]. The boundary conditions for 
the initial-state wavefunction are modified accordingly since there is no incident wave as 
in the ED situation. While the procedure may take more calculation time than direct 
evaluation of the initial-state Green function [26,27], the contributions of the individual 
surface electronic stam to the photocurrent are, obtained separately, which facilitates the 
physical interpretation: further the bandstructure incorporating the surface is obtained as a 
by-product of the photoemission calculation [34]. 

The wavefunction of an initial state can also be written as an expansion as in 
equation (5) for the LEW) wavefunction, but with superscript i, denoting the initial state 
of the photoelectron instead of L. The scattering amplitude Y;,,,,(Z) for the initial state, in 
the bulk region, is expressed as a linear combination of Bloch wave amplitudes, as was 
that of the final state. A pseudopotential is used to calculate the initial states, so different 
Hamiltonians are used for calculation of the initial and final states, which therefore must 
be properly aligned in energy when evaluating equation (1). The number of Y;,,&,(z) is 
dependent on the material being studied 1341, and is determined by increasing this number 
(the number of beams) until a sufficiently accurate bandstructure is obtained. 

Specifically, an initial state YF.k, in the bulk region is fonned from the mth Bloch wave 
with amplitudes 'bF,i, moving towards the surface from the bulk, and ones with amplitudes 
'b;;. constituting of those moving away from the surface into the bulk (reflected ones) and 
of a number of evanescent Bloch waves decreasing into the bulk necessary to match waves 
at the crystal/vacuum interface. All of these waves have the same energy and reduced kfl.  
The initial state Y;,k, is written as 
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In matrix notation equation (8) and its derivative can be expressed as 

Um(z) = B:(z)Cm + br-(z)c?- 

U'"(z) = Bi+.(z)C" + b;"-(z)c"-. 
(9) 

(10) 

BF and Bif are N x N matrices containing the.Bloch amplitudes and derivatives respectively 
travelling away from the surface (and C" is a column matrix containing their coefficients c,"). 
by- and bF- are column matrices containing the Bloch wave amplitudes and derivatives 
for the mth Bloch wave travelling towards the surface with amplitude c": (a number). 

in the expansion of 
the scattering amplitude are found by matching the scattering amplitudes and derivatives at 
z = 0 to evanescent waves in the vacuum. The resulting equation for Cm is 

In the absence of a surface barrier or over-layer, the coefficients 

c m - - B .  - [ ;'CO) +iKB:(O)]-'[bp-(O) +iKbr-(O)]F- (11) 

where K is.a diagonal N x N matrix containing the normal components of the wave vectors 
of the N evanescent waves in the vacuum. The value of e"- is evaluated in normalizing 
the initial state wavefunction (see below). 

To include an over-layer or surface barrier, the waves must be matched at both the 
bulk crystal/over-layer interface and the over-layer/vacuum interface. The equation for the 
coefficients in this case is given by 

(12) Cm = -[Bj+(s) - XY-'.B+(s)]-'[b:-(s) - XY-'br-(s)]F- 

where 

a S ( s )  is the a-matrix for the surface region with thickness s [34]. 

2.3.1. Orthogonalization and normalization of the initial states. The final state, determined 
as described above, is normalized properly in a LEED calculation so that the incident electron 
has a probability amplitude of one; however the initial states must be orthogonalized and 
normalized in order to be inserted in equation (1). In the present calculation we can show 
(cf. [371 and [381) that as long as the effect of evanescent Bloch waves can be neglected, the 
wavefunctions given by equation (8) with different indices m can be regarded as forming an 
orthogonal system of initial states in the space of the half-infinite crystal. The normalization 
to the delta function of energy leads to the value of cm- given by 

112 
cm- = [ (c /x)(-ak,- /aE)]  

where we have assumed that the Bloch waves are normalized in one unit cell, giving 

c is the unit lattice translation in the z direction. We note that ak, - / a E  in equation (14) is 
negative since the Bloch waves with amplitudes ibt;(z) are assumed to be moving towards 
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the sutface from the bulk. The quantity (ak,,-/aE)-’is the group velocity of the Bloch 
electron and can be calculated as [39] 

assuming the same normalization of the Bloch wave as above. Hence we may write 

A more detailed analysis of the orthogonalization and normalization is necessary when the 
contributions of evanescent Bloch waves become significant. This takes place at resonances 
and near band edges 1381. 

2.4. Derivation of the photocurrent equation 

For simplicity, assuming an orthogonal crystal lattice system, and correspondingly an 
orthogonal coordinate system (generalization to non-orthogonal systems can easily be done), 
the photocurrent as expressed in equation (1) is p r o p o r t i ~ ~ l  to 

where the polarization vector Pis given by 
A 

e = E$+ E$+ Ezk = sin (I sin @+ sin (I cos B+ cos d. 
(I is the angle between F and the_surface normal and j3 is defined to be the angle between 
the parallel component of 3 and i. 

Substituting into equation (15) the Fourier series expressions for the initial and final 
states (analogous in form to equations (5) and (7)) leads to, 

The two-dimensional real-space vector pII can be written out more fully as 

PI1 = (x/lalI)al + (y/lazl)a2 

where a1.2 are the direct lattice vectors in the surface plane, and x and y are the real-space 
distances. Also, in equation (16) 

k:,: = ($i/lbi I + 2nh)bi + (k:/lbzl i- % k ) b  

where k:: and k: ~IE the components of the wave vector ky in the directions bl and bz 
respectively. The dot product in equation (16) can then be written as 

k2:k * ~ I I  = (k2,i/lhl +bh)x/ lalI  + (&’/lbzl+2nk)y/lazl. 
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Expanding V, equation (16) can be expressed as 

1 

la1 I 
x-+sinoccos@Zni 

2 
x Y~,,k,(z)exp(ik~.,k. . pll)dn dy dzl . 

The i'ntegral over x and y can be replaced by the delta functions 

, ,  
S{ [kL; /2~ lb i l+  h' - ($,l/2~lbtl + h ) ] / h I ]  

&nd ~. 

~ [ [ k ~ / 2 & 1 ~ ~ -  (kk/%lbzl + k ) ] / l m I ] .  

Therefore, there will be zero photocurht unless 

( l / l b l l ) ( k ~ ,  - k i , )  = 2 n ( h - h ' )  and ( l / l b 2 1 ) ( k ~ - ~ ~ )  = k ( k - k ' )  (17) 

&at is, unless the parallel component of the wave v 4 o r  is conserved modulo a surface 
reciprocal lattice vector. Writing the wave vectors in terms of the reduced zone scheme 
(superscript R), it can be deduced from equation (17) that kf,i = kf: and similmly for the bz 
component of k, which gives h' = h+n and k' = k + q ,  where n and q are deteftninedf" 
the d m i o n  of emissi6n of the photoelectron and the energy. This relationship describes the 
position of ki relativk to ki, in the extended two-dimensional Brillouin zone. Equation (16) 
can thin he writtei simply as 

i (F ;  8) a I c y ~ ~ ( A Z j ) ~ h , k y ~ + ~ , k ~ ( A Z j )  12' (18) 
oceupiedi slices j h:k 

where the integral over z is evaluated @ a sum over the slices Azj and 

Fh,k =%i{[(h+n)lbl l  +kfj /~n]sintzsin ~ + [ ( k + 4 ) l b z l + k ~ / k ] s i n c r c o s  p 
+COS (I a/az] 

(for an Cirthogonal system l/(lblllall) = 1; similarly for b2 and az).  

2.5. CGuributiori to the photocurrenthom the bulk crystal 

As mentioned earlier, the crystal is k r i b e d  by a z coordinate with values of z = 0 + s 
for an over-layer and z = s 4 +ca for the bulk crystal. The contribution to the 
photocment from the semi-infinite bulk is given by the integral over z = s + +ca. 
and is discussed below. 

Substituting the Bloch expangions for the initial (equation (8)) and final (as for 
equation (6) but with superscript f instead of L) states into equation (18). the probability 
amplitude AB of the photocuirent due to the mth initial state in the bulk crystal can be 
written as (dropping the index m )  
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where normal emission is assumed for simplicity, i.e. n and q in equation (18) are equal 
to zero. The above equation can be split into two terms 

and 

The contribution from slices lying beyond the first cell can then be expressed in terms of the 
Bloch functions in the first cell. If there are q slices in the cell and Az, denotes the last slice 
Of the cell, then for example, summing the contribution from slices Az, , Az,+, , AZQ+I, . . . 
occumng in the expression for dl leads to (writing ki, IC; for Bloch wave vectors) 

X $E,;(Azi)tpFh,k ibF,b(AZi)C- 

where c is the lattice period normal to the surface. This is equal to 

Repeating this procedure for all of the slices of the bulk cell gives 

Similarly, the contribution for the second term A2 becomes 

The complete expression for d g  can then be written as 

where 

A; = 1/( 1 - exp[i(-k;* + k)  cl] 

and 

= I/{ I - exp[i(-q* + ki) . cl]. 
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The final form of the probability amplitude for the photocurrent (not including surface 
states or an over-layerhface barrier) can then be written in terms of LEED functions as 

where 

A; = I / (  1 - exp[i(k;: + ki). e]} 

A:~. = l / ( l - e x p [ i ( ~ ; : + ~ ' ) . c ~ } .  

and 

The interference between different layers is accounted for by the factors A which represent 
the remnant of the conservation of crystal momentum in the z direction. Only if an infinite 
number of layers contribute to the photocurrent (i.e. in the unrealistic c k  of vanishing 
damping) do the factors A reduce to the 8-function-like form. To simulate the effect of 
inelastic scattering (damping) an imaginary part is added to the energy for both the initial 
and final states.. A value of this parameter can be obtained by various means 140,411. 
Accordingly, the wave vectors are complex in the z direction. 

2.6. Contribution to the photocurrent from the surface barrier or over-layer 

The contribution AS to the probability amplitude of the photocurrent due to the surface 
barrier or over-layer for a particular initial state is given by 

AS = 2 cY~u,f: , (AZj)Fh.~W~.x(Azj)  
surfaceslior j = 1  h.k 

where there are m slices in the surface barrier or over-layer. This contribution is added to 
thar de. of the bulk. The values of W& and Wi.k in the surface region are obtained using 
the a-matrix formula having determined their values inside the bulk. 

2.7. One-dimensional DOS factor 

Lastly the sum over 'occupied i' must be considered. This sum implies two factors, one 
of which was mentioned above, that is, the contribution to the intensity from each initial 
state (each 'b;,;(z) in equation (8)) with band index m - must be added together. 'The 
second factor is the one-dimensional density of states ak, - /aE along kr, We see, however, 
in equation (14) that this factor is already included in the normalization factor cm- in 
normalizing the initial-state wavefunctions to the delta function of energy. The total current 
is then given by 

j ( g , E ) o :  I d ~ - ' + A ~ - ' 1 * .  (19) 
accupiedbmd (m -) 

We note that the contributions from the bands with index n ' f ,  corresponding to the Bloch 
waves moving away from the surface into the bulk, may be obtained by collecting the 
contributions from the corresponding term in the expression for dz above. It can also be 
shown (cf. [8] and [38]) that the density-of-states factors for these bands are automatically 
correctly introduced. 
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2.8. Surface states as initial states 

Photoemission is possible from both surface states and surface resonances. Surface 
resonances occur outside an energy gap and are like surface. reflected bulk states with a 
high amplitude near the surface. Emission from these states are included in the method 
described above. 

Surface states are evanescent waves located at the surface of a crystal, therefore the 
expression for their scattering amplitudes and derivatives in terms of Bloch waves does not 
contain any propagating waves, only decreasing components. Neglecting again initially the 
presence of a surface barriedover-layer, the surface state wavefunctions are derived from 
equations (9) and (10). but without the b; and bi- terms present. The coefficient vector c 
is determined by solving the homogeneous equation 

Q c = O  (20) 

where 

Q = B',"(O) + iKBF(0). 

A solution will exist if the determinant of Q is zero, which occurs only at discrete energies. 
This constitutes a method of obtaining the surface state/resonance bandstructure [34]. Thus, 
in the present calculation scheme the surface state, as an initial state, must be calculated 
by a different method to that for bulk states and surface resonances. A convenient way of 
obtaining the photocurrent due to a surface state with a finite lifetime is as follows. 

After equation (I) ,  the photocment for a particular initial state $j can be expressed as 
being proportional to 

' 

I(*flH'"~I*i)l2s(Et - ~ E j  - fiw) = (*rlH'"*I*;)s(Er - Ej -fif4(*ilHi"~l*f). 

The central part is replaced by [26] 

I*i)S(E - E M i l  = --(I/Jwm Ci(E) 

where E = Er -fiw and G;(E) is the ith spectral component of the Green function 

G i ( E )  = I@;)Wil/(E - Ei +iei) ( ~ i  --+ CO) 
giving 

j (R? E )  o( -(l/z) ( * f l H i y s m  Gi(E)IH"l*f). (21) 

To intrcduce a finite lifetime we impose on si a finite value. Then a surface state I@;) appears 
at energy Ei with lifetime parameter q. It is desired to find an approximate expression for 
Gi(E)  for values of E near Ei.  

In place of equation (20) a more general equation can be written: 

Q ( E ) c ( E )  = w(E)c(E)  (22) 

where w(E) and c(E) are the eigenvalue and eigenvector of Q(E)  respectively. 
Equation (22) indicates that one of the eigenvalues, p;(E) ,  becomes equal to zero at E = E,.  
(This is equivalent to det Q = 0, because det Q is equal to the product of the eigenvalues 
of Q). Expanding /li (E) in a Taylor series around Ei 

pi(E) = (dpi/dE)E=E,(E - E i )  + . . . 
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Then writing 

( E  - Ei) = (dpi/dE)&pi(E) 

and substituting it into the expression for Gi(E)  

Gi(E)  = I ~ i . i ) ( ~ i l / { [ ( d l L i / d E ) E = E i ~ - ' ~ i f E )  + iei). 

The eigenvector of Q ( E )  which belongs to the eigenvalue pi(E) is designated c j (E) .  
The value of c which is sought as a solution of equation (20) 'is simply the value of C i ( E )  
at E = Ei. Hence 

I h )  = IC) = Ici(&)). 

The symbol IC) means a linear combination of Bloch functions with coefficients c,. Hence 

Gi (0 = ICi (&)) (Ci (E,) I/{ [ (dpi/dE) e=e,]-'@i ( E )  + i&i 1. ' 

Icj(Ei)) should be normalized in such a way that the integral of the absolute square of 
the wavefunction @{ over the two-dimensional unit cell and the range of z in which @i is 
finite (including the vacuum region) becomes unity. In the present notation the integral is 
evaluated as 

($i, 'ki)  Yi>(A~j)Yi .~(Azj )  
slim j h.k 

where Yi.k(z) = Ez 'b;,2(z)cn in the bulk crystal. Their values in the surface and vacuum 
regions are derived by the n-matrix method (as in section 2.6). 

Since the values of dpj/dE and ci may not vary appreciably in the small energy range 
of a surface state peak breadth, their actual values may be replaced by  their approximate 
values.evaluated at "energy E = E; near E i .  Thus, exact value of Ei need not be 
found Then Gi (E) can be written as 

Gi(E) = Ici(EI))(~i(E,:)l/{.[(dpi/dE)~=e;]-'pi(E) + ki}. (23) 

This equation can be evaluated by'firstly approximatdy locating the surface state by finding 
either, the. zeros of Q or the minima of p that are most conveniently located by considering 
instead the Hermitian matrix QtQ and finding the minima of the corresponding eigenvalues 
1pI2. Once located at energy E:, p is obtained for a small region of energy around the surface. 
state from which the denominator of equation (23) can be evaluated. The eigenvectors of 
equation (22) give [&(E()). is then evaluated and substituted into equation (21) to 
obtain the photocurkm due to the surface state. 

., 

3. Application to Mg(OOO1) 

AS a numerical example, the method presented above is applied to the calculation of normal- 
emission photoemission intensities from Mg(0001) in the photon energy range frw =.26- 
48 eV where the results obtained are compared to the experimental data of Bartynski er 
a1 ,[42] (figure 2). Figure I(a) and (ti) shows respectively the experimental and theoretical 
results. The main features in the experimmtal results are a surface-state peak which occu&in 
all the spectra at approximately -1.6 eV, Md abulk transition seen initially at approximately 
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Ezpenmentd 

-8 EF 2 
Energy (eV) 

Theoretical Kt 

~ 

-8 Er 2 
Energy’(eV) 

Figure 1. (a) Experimental normal-emission photoemission speetra f” Le Mg(00ol) surface 
far various photon energies, reproduced f” 147.1; (b) calculated phofoemission infensities 
obtained using h e  present methcd. 

-6.2 eV for ho = 26 eV. The latter peak disperses towards the Fermi level with increasing 
photon energy. At hw 2 44 eV this peak coincides with the surface-state peak. 

The theoretical results show reasonable agreement with the experimental results, where 
a surface state occurs at approximately -1.6 eV. The corresponding bulk transition is seen 
at about -6.9 eV for Rw = 26 eV and disperses towards the Fermi level with increasing 
photon energy as in the expenmental results. The theoretical spectra were calculated using 
a three-dimensional sutface potential barrier (both at initial state and final state energies) in 
which the potential smoothly goes to zero in the vacuum region. It was obtained using a 
supercell consisting of eight Mg layers (20.8 A) and a vacuum region corresponding to the 
same distance [321. 

It can be seen when comparing the themtical spectra with the experimental data that 
the bulk transition is shifted non-uniformly. The origin of this discrepancy could be due 
to either deficiencies in the local-density approximation used in the band calculations or to 
inaccuracies inherent in comparing an excitation spechum with a ground-state calculation 
(the self-energy effect). 

The surface-state intensities of both the experimental and theoretical results exhibit 
a sensitive variation with photon energy. This is illustrated in figure 2 in which the 
experimental points have been reproduced from 1421 (figure 3) and are shown as filled 



A photoemission calculation scheme for valence electrons 8223 

A . .. 35 Photon Energy 45 (eV) 55 

F y r e  2. Cmpanson of the surface-state intensity as a function of photon energy. The filled 
eireles the experimenral ESLIIIS faLen from 1421: the fine c w e  is  the calculated intensity 
obtained using a step banier and the bold curve is the Calculated intensity obtained using a 
smooth mrface barrier. 

circles. The theoretical points, obtained using equation (21), are shown as the curves. The 
fine curve is the result obtained using a step barrier placed half way between Mg atoms 
and for the bold curve the same smooth surface barrier as in figure 1@) is used. It can 
be seen that the smooth barrier yields results that agree better with experiment, illustrating 
the importance of including a realistic surface potential barrier when surface effects in 
photoemission are being investigated. The results briefly presented above will be discussed 
in more detail in a subsequent publication [32]. 

4. Conclusion 

It is shown that a one-step photoemission calculation scheme can be presented in a 
formulation based on the multi-slice method of determining LEED intensities. It is 
applicable for electrons in the valence band region and takes account of final-state and 
surface effects and electron and hole lifetimes. Emission from bulk and surface states are 
calculated separately in the present procedure. This method has been successfully applied 
to magnesium and gallium arsenide, the results of which will appear in subsequent papers 
132,331. 
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